Listing strategies

Product rule for counting: \rightarrow 4 × 3 × 2 × 1 = 24 ways to arrange the letters P, I, X and L.

Powers and roots

N6, N7 Special indices: for any value *a*:

$$a^{0} = 1$$

$$a^{-n} = \frac{1}{a^{n}}$$

$$\frac{(\underline{p})}{a^{n}}$$

$$a^{2} - b^{2} = (a + b)(a - b)$$

$$x^{2} - 25 = (x + 5)(x - b)$$

Look for the biggest square number

 $8^{\left(\frac{2}{3}\right)} = \sqrt[3]{8^2} = 4$

factor of the number: $\sqrt{80} = \sqrt{16 \times 5} = 4\sqrt{5}$

Rationalise the denominator N8

Multiply the numerator and denominator by an expression that makes the denominator an integer:

$$\frac{4}{\sqrt{7}} = \frac{4 \times \sqrt{7}}{\sqrt{7} \times \sqrt{7}} = \frac{4\sqrt{7}}{7}$$

$$\frac{2}{4 + \sqrt{5}}$$

$$=\frac{2}{4-\sqrt{5}}\times\frac{4-\sqrt{5}}{4-\sqrt{5}}=\frac{2(4-\sqrt{5})}{11}$$

Standard form

Standard form numbers are of the form $a \times 10^n$, where $1 \le a < 10$ and *n* is an integer.

Recurring decimals

Make a recurring decimal a fraction: $n=0.2\dot{3}\dot{6}$

(two digits are in the recurring pattern, so multiply by 100)

100n = 23.6(this is the same as $23.6\dot{3}\dot{6}$) 99n = 23.636 - 0.236 = 23.4 $n = \frac{23.4}{99} = \frac{234}{990} = \frac{13}{55}$

Error intervals

Find the range of numbers that will round to a given value:

N15

 \rightarrow x = 5.83 (2 decimal places) $5.825 \le x < 5.835$

 \Rightarrow y = 46 (2 significant figures) $45.5 \le y < 46.5$

Note use of \leq and \leq , and that the last significant figure of each is 5.

Equations and identities

An equation is true for some particular value of x...

 \Rightarrow 2x + 1 = 7 is true if x = 3 ...but an identity is true for every value of x

 $(x+a)^2 \equiv x^2 + 2ax + a^2$ (note the use of the symbol \equiv)

For any value *a*:

$$a^{x} \times a^{y} = a^{x+y}$$

$$\frac{a^{x}}{a^{y}} = a^{x-y}$$

$$(a^{x})^{y} = a^{xy}$$

$$\Rightarrow \left(\frac{2pq^4}{p^3q}\right)^3 = \frac{8p^3q^{12}}{p^9q^3} = \frac{8q^9}{p^6} \text{ or } 8q^9p^{-6}$$

$$a^{2} - b^{2} = (a + b)(a - b)$$

$$x^{2} - 25 = (x + 5)(x - 5)$$

 \rightarrow Make x the subject of 2x + ay = y - bx2x + bx = y - ayx(2+b)=y-ay

$$fg(x) = f(g(x))$$

$$fg(x) = x + 3 \text{ and } g(x) = x^2$$

$$fg(x) = x^2 + 3$$

$$gf(x) = (x + 3)^2$$

→ If
$$f(x) = 2x + 5$$
 then
$$f^{-1}(x) = \frac{x - 5}{2}$$

→ Find the equation of the line that joins (0,3) to (2,11)

and $y = -\frac{1}{2}x + 3$ are perpendicular

Transformations of curves A13

Translate $\binom{-a}{0}$ for y = f(x + a)

Reflect in x axis for y = -f(x)Reflect *y* axis for y = f(-x)

Velocity - time graph

Gradient = acceleration (you may need to draw a tangent to the curve at a point to find the gradient); Area under curve = distance travelled.

Iteration

You will be given the formula to use: \rightarrow Solve $x^3 + 6x + 4 = 0$ by using the iteration $x_{n+1} = \sqrt[3]{6x_n - 4}$.

Start with $x_1 = -2.8$.

$$x_2 = \sqrt[3]{6 \times (-2.8) - 4} = -2.750 \dots$$

 $x_3 = \sqrt[3]{6 \times (-2.750 \dots) - 4} = \dots$
Repeat until you know the solution, or

you do as many as the question says.

→ I invest £600 at 3% compound interest. What is my account worth after 5 years?

Total accrued = $P\left(1 + \frac{r}{100}\right)$

Percentages: multipliers R9, R16

Percentage increase or decrease; use

→ Initially there were 20 000 fish in a lake. The number decreases by

 $20\ 000 \times 0.85^6 = 7\ 500\ (2sf)$

a multiplier (powers for repetition)

15% each year. Estimate the

number of fish after 6 years.

Formula for compound interest

£600 ×
$$\left(1 + \frac{3}{100}\right)^5 = £695.56$$

Direct & inverse proportion R10

y is directly proportional to *x*: y = kx for a constant k

 \rightarrow b is directly proportional to a^2 ; a = 6 when b = 90. Find b if a = 8. $b = ka^2$; a = 6 and b = 90 for k; $90 = k \times 6^2$ so $k = 2.5, b = 2.5a^2$ $b = 2.5 \times 8^2 = 160$

y is inversely proportional to x:

yx = k or $y = \frac{k}{x}$ for a constant k

Multiply for independent events

→ P(6 on dice and H on coin) $\frac{1}{6} \times \frac{1}{2} = \frac{1}{12}$

Add for mutually exclusive events

⇒ P(5 or 6 on dice) $\frac{1}{6} + \frac{1}{6} = \frac{2}{6}$

Apply these rules to tree diagrams.

P(A or B) = P(A) + P(B) - P(A and B) $P(A \text{ and } B) = P(A \text{ given } B) \times P(B)$

Histograms

Frequency = frequency density multiplied by class width. This means that bars with the same frequency have the same area.

Laws of indices

$a^{x} \times a^{y} = a^{x+y}$ $\frac{a^{x}}{a^{y}} = a^{x-y}$

Difference of two squares

$$a^{2} - b^{2} = (a + b)(a - b)$$

$$x^{2} - 25 = (x + 5)(x - 5)$$

Rearrange a formula

The subject of a formula is the term on its own. Rearrange to

$x = \frac{y - ay}{2 + b}$

Combining functions:

fg(x) = f(g(x))

The inverse of f is f^{-1}

Equation of straight line y = mx + cm is the gradient; c is the y intercept:

Find its gradient... 11 - 3 = 8 $\frac{}{2-0}=\frac{}{2}$

...and its y intercept... Passes through (0, 3), so c = 3. Equation is y = 4x + 3.

Parallel lines: gradients are equal; perpendicular lines: gradients are "negative reciprocals".

 \rightarrow v = 2x + 3 and v = 2x - 5 are parallel to each other; y = 2x + 3

Starting with the curve y = f(x): Translate $\binom{0}{a}$ for y = f(x) + a

Trigonometry. Links two sides and one angle. SOH CAH TOA

 $\sin\theta = \frac{\text{opp}}{\text{hyp}} \quad \cos\theta = \frac{\text{adj}}{\text{hyp}} \quad \tan\theta = \frac{\text{opp}}{\text{adj}}$

The longest side of any right angled triangle is the hypotenuse; check that your answer is consistent with this.

Advanced trigonometry

Use if you are given an angle-side pair Missing side:

 $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$ Missing angle:

Cosine Rule Use if you can't use the sine rule

Missing angle: $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$

without a calculator)... $\sin 0^{\circ} = 0$, $\cos 0^{\circ} = 1$, $\tan 0^{\circ} = 0$ $\sin 30^{\circ} = \frac{1}{2}$, $\cos 30^{\circ} = \frac{\sqrt{3}}{2}$, $\tan 30^{\circ} = \frac{1}{\sqrt{3}}$

Special values of sin, cos, tan

Learn (or be able to find

 $\sin 45^\circ = \frac{1}{\sqrt{2}}, \cos 45^\circ = \frac{1}{\sqrt{2}}, \tan 45^\circ = 1$

Missing side: $a^2 = b^2 + c^2 - 2bc\cos A$ $\sin 60^\circ = \frac{\sqrt{3}}{2}$, $\cos 60^\circ = \frac{1}{2}$, $\tan 60^\circ = \sqrt{3}$ $\sin 90^{\circ} = 1$, $\cos 90^{\circ} = 0$

Circle theorems

A19

A is opposite a

B is opposite *b*

C is opposite *c*

semicircle is 90°

Angle in a

Angle at the centre

is double the angle

at the circumference are equal

Angles in the

same segment

Tangent and radius are perpendicular

Areas and volumes

Circumference of circle = $\pi \times D$ Area of triangle = $\frac{1}{2}ab\sin C$ Area of circle = $\pi \times r^2$

total 180°

G16, G17, G18, G23

 $Arc length = \frac{\theta}{360^{\circ}} \times \pi \times D$ Area of sector = $\frac{\theta}{360^{\circ}} \times \pi \times r^2$

Area of trapezium = $\frac{1}{2}(a+b) \times h$ Volume of prism = area of cross section × length

Volume of cone = $\frac{1}{2}\pi r^2 h$ Volume of frustum is difference between the volumes of two cones

Translation Angle of rotation Vector

Centre of enlargement

• Scale factor (if -1 < SF < 1

Similar shapes

• Length/perimeter 1:*n* a: b

 Volume $1:n^{3}$ $a^3:b^3$

Transformations

Reflection • Line of reflection • Centre of rotation

Enlargement

• Clockwise or anticlockwise the shape will get smaller).

Ratios in similar shapes and solids:

 a^2 : b^2 Area $1:n^{2}$

Standard graphs

Ouadratics

If a quadratic equation cannot be

 $x = \frac{-3 - \sqrt{9 - (-56)}}{2 \times 2} = -2.73$

factorised, use the formula

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $\Rightarrow \text{Solve } 2x^2 + 3x - 7 = 0$

or $x = \frac{-3 + \sqrt{9 - (-56)}}{2 \times 2} = 1.23$

Complete the square to find the

Turning point is at (3, -7)

 \Rightarrow $x^2 + y^2 = 25$ has centre

Simultaneous equations

One linear, one quadratic;

⇒ Solve $\begin{cases} x + 3y = 10 \\ x^2 + y^2 = 20 \end{cases}$

Equation of a circle

(0,0) and radius r.

(0,0) and radius 5.

into the quadratic

solve, pairing values...

Sequences

 $3 \times 1 + 2 = 5$.)

 $an^2 + bn + c$

sequence is bn + c

turning point of a quadratic graph.

 $y = x^2 - 6x + 2$

 $x^2 + y^2 = r^2$ is a circle with centre

Rearrange the linear, and substitute

x = 10 - 3y

so $(10-3y)^2+y^2=20$

 $100 - 60y + 9y^2 + y^2 = 20$

 $10y^2 - 60y + 80 = 0$

y = 2 or y = 4

Finally, substitute into the linear and

 $x + 3 \times 2 = 10$ so (x, y) = (4, 2)

 $x + 3 \times 4 = 10$ so (x, y) = (-2, 4)

nth term of an arithmetic (linear)

 \rightarrow nth term of 5,8,11,14,... is 3n+2

(always increases by 3; first term is

*n*th term of a quadratic sequence is

Geometric sequence; multiply each

Fibonacci sequence; make the next

term by adding the previous two ...

→ First three terms of

term by a constant ratio → 3, 6, 12, 24, ... (ratio is 2)

 $n^2 + 3n - 1$ are 3, 9, 17, ...

→ 2, 4, 6, 10, 16, 26, 42, ...

Expand and solve the quadratic

 $y = (x-3)^2 - 9 + 2$ $y = (x-3)^2 - 7$

A11, A18 Right angled triangles

Sine Rule

Use "2ndF" or "SHIFT" key to find a missing angle

 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

Rotation