Physics topic 6: Waves

1. Keywords	
Transverse wave	A wave where the vibration is perpendicular to the direction of travel
Longitudinal wave	A wave where the vibrations are parallel to the direction of travel
Mechanical wave	A vibration that travels through a substance (e.g. sound)
Frequency	The number of wave fronts passing a fixed point every second (measured in Hz)
Period	The time for one complete wave
Ultrasound	Sound above 20,000Hz
Superposition	When two waves meet and affect each other
Reflection	When waves bounce off a surface
Echo	Reflection of sound that can be heard

3. Comparing types of wave

Comparing waves:	Light wave	Mechanical wave	
Type of wave	Transverse	Longitudinal	
Can they travel through a vacuum?	Yes	No. Mechanical waves can only pass through a solid, liquid or gas	
Can they be reflected?	Yes. By smooth shiny surfaces	Yes. By smooth surfaces	
Can they be absorbed?	Yes. By dark surfaces	Yes. Rough surfaces absorb sound	
Can superposition occur?	Yes	Yes	

4. Wave equation

v =	$= f\lambda$
ν	Wave speed (m/s)
f	Frequency (Hz)
λ	Wave length (m)

5. Uses of ultrasound (HT PHYSICS ONLY)		
Use	How it works	
Cleaning jewellery	The vibrations of the wave shake the dirt lose	
Scanning the human body	The waves are partially reflected at different tissue boundaries	
Industrial imaging	The waves can detect flaws in metal castings as they are partially reflected by cracks	
Physiotherapy	Energy from the wave is absorbed by body tissue and relieves pain	

6. Seismic waves produced by earthquakes (HT PHYSICS ONLY) 1 S waves Transverse Only travel through solid 2 P waves Longitudinal Travel through the earth and are refracted when they pass through different density medium

			2
			The paths of these waves are curved because density is gradually changing
		Name	Notes
ency	1	Radio	Produced by oscillations in circuits (HT)
	2	Microwaves	

		Hamo	110100
Low Frequency High Frequency	1	Radio	Produced by oscillations in circuits (HT)
$10^{0} 10^{2} 10^{4} 10^{6} 10^{8} 10^{10} 10^{12} 10^{14} 10^{16} 10^{18} 10^{20} 10^{22} 10^{24}$	2	Microwaves	
	3	Infrared	Thermal energy
1 2 3 5 6 7	4	Visible	
10^8 10^6 10^4 10^2 10^0 10^{-2} 10^{-4} 10^5 10^{-8} 10^{-10} 10^{-12} 10^{-14} 10^{-16}	5	Ultra violet	Skin damage
Long Wavelength Short Wavelength	6	X rays	Cause cancer
	7	Gamma rays	Cause cancer

7. The electromagnetic spectrum

8. The properties of EM waves on materials (HT ONLY)		
1	Transmit	
2	Specular Reflection	
3	Diffuse Reflection	
4	Absorb	
5	Refract	

	4
	5

1

2

3

9. Uses of EM waves		
Name	Use	
Radio	Radio and TV	
Microwaves	Satellite communication, cooking food	
Infrared	Electric heaters, cooking food, infra-red cameras	
Visible	Fibre optic communication	
Ultra violet	Energy efficient lamps, sun tanning	
X rays	Imaging bones	
Gamma rays	Radiotherapy, medical imaging	

Convex Concave)

10. Lenses (physics only)

image height magnification = object height

11. Black body radiation (physics only)			
emit		give out	
absorb		Take in	
Black body		An object that absorbs all the radiation shone on it. It is the best possible emitter	
12. Perfect black bodies and radiation			
1	The intensi	ty of black body radiation depends on	

The intensity of black body radiation depends on
temperature

2	The hotter the object the more radiation is emitted

3 The hotter the object the greater the increase in the proportion of shorter wavelengths

White hot is hotter than red hot